Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Clin Virol ; 165: 105499, 2023 08.
Article in English | MEDLINE | ID: covidwho-2328193

ABSTRACT

SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19. In addition to the full length positive-sensed, single-stranded genomic RNA (gRNA), viral subgenomic RNAs (sgRNAs) that are required for expression of the 3' region of the genome are synthesized in virus-infected cells. However, whether these sgRNA-species might be used as a measure of active virus replication and to predict infectivity is still under debate. The commonly used methods to monitor and quantitate SARS-CoV-2 infections are based on RT-qPCR analysis and the detection of gRNA. The infectivity of a sample obtained from nasopharyngeal or throat swabs is associated with the viral load and inversely correlates with Ct-values, however, a cut-off value predicting the infectivity highly depends on the performance of the assay. Furthermore, gRNA derived Ct-values result from nucleic acid detection and do not necessarily correspond to active replicating virus. We established a multiplex RT-qPCR assay on the cobas 6800 omni utility channel concomitantly detecting SARS-CoV-2 gRNAOrf1a/b, sgRNAE,7a,N, and human RNaseP-mRNA used as human input control. We compared the target specific Ct-values with the viral culture frequency and performed ROC curve analysis to determine the assay sensitivity and specificity. We found no advantage in the prediction of viral culture when using sgRNA detection compared to gRNA only, since Ct-values for gRNA and sgRNA were highly correlated and gRNA offered a slightly more reliable predictive value. Single Ct-values alone only provide a very limited prediction for the presence of replication competent virus. Hence, careful consideration of the medical history including symptom onset has to be considered for risk stratification.


Subject(s)
COVID-19 , RNA, Viral , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , Subgenomic RNA , Genomics , Virus Replication
2.
Int J Infect Dis ; 128: 166-175, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2232009

ABSTRACT

OBJECTIVES: Regarding reactogenicity and immunogenicity, heterologous COVID-19 vaccination regimens are considered as an alternative to conventional immunization schemes. METHODS: Individuals receiving either heterologous (ChAdOx1-S [AstraZeneca, Cambridge, UK]/BNT162b2 [Pfizer-BioNTech, Mainz, Germany]; n = 306) or homologous (messenger RNA [mRNA]-1273 [Moderna, Cambridge, Massachusetts, USA]; n = 139) vaccination were asked to participate when receiving their second dose. Reactogenicity was assessed after 1 month, immunogenicity after 1, 3, and/or 6 months, including a third dose, through SARS-CoV-2 antispike immunoglobulin G, surrogate virus neutralization test, and a plaque reduction neutralization test against the Delta (B.1.167.2) and Omicron (B.1.1.529; BA.1) variants of concern. RESULTS: The overall reactogenicity was lower after heterologous vaccination. In both cohorts, SARS-CoV-2 antispike immunoglobulin G concentrations waned over time with the heterologous vaccination demonstrating higher neutralizing activity than homologous mRNA vaccination after 3 months to low neutralizing levels in the Delta plaque reduction neutralization test after 6 months. At this point, 3.2% of the heterologous and 11.4% of the homologous cohort yielded low neutralizing activity against Omicron. After a third dose of an mRNA vaccine, ≥99% of vaccinees demonstrated positive neutralizing activity against Delta. Depending on the vaccination scheme and against Omicron, 60% to 87.5% of vaccinees demonstrated positive neutralizing activity. CONCLUSION: ChAdOx1-S/BNT162b2 vaccination demonstrated an acceptable reactogenicity and immunogenicity profile. A third dose of an mRNA vaccine is necessary to maintain neutralizing activity against SARS-CoV-2. However, variants of concern-adapted versions of the vaccines would be desirable.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19 Vaccines , Prospective Studies , SARS-CoV-2 , Vaccination , Immunization , ChAdOx1 nCoV-19 , RNA, Messenger , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
3.
Sci Immunol ; : eade9888, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2193420

ABSTRACT

The SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30 amino acid alterations within the spike (S) glycoprotein. Breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.2 is associated with distinct patterns of cross-neutralizing activity against SARS-CoV-2 variants of concern (VOCs). In continuation of our previous work, we characterized the effect of Omicron BA.4/BA.5 S glycoprotein exposure on the neutralizing antibody response upon breakthrough infection in vaccinated individuals and upon variant-adapted booster vaccination in mice. We found that immune sera from triple mRNA-vaccinated individuals with subsequent breakthrough infection during the Omicron BA.4/BA.5 wave showed cross-neutralizing activity against previous Omicron variants BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 itself. Administration of a prototypic BA.4/BA.5-adapted mRNA booster vaccine to mice following SARS-CoV-2 wild-type strain-based primary immunization is associated with broader cross-neutralizing activity than a BA.1-adapted booster. While the Omicron BA-1-adapted mRNA vaccine in a bivalent format (wild-type + BA.1) broadens cross-neutralizing activity relative to the BA.1 monovalent booster, cross-neutralization of BA.2 and descendants is more effective in mice boosted with a bivalent wild-type + BA.4/BA.5 vaccine. In naïve mice primary immunization with the bivalent wild-type + Omicron BA.4/BA.5 vaccine induces strong cross-neutralizing activity against Omicron VOCs and previous variants. These findings suggest that when administered as boosters, mono- and bivalent Omicron BA.4/BA.5-adapted vaccines enhance neutralization breadth, and that the bivalent version also has the potential to confer protection to individuals with no pre-existing immunity against SARS-CoV-2.

5.
Transplantation direct ; 8(11), 2022.
Article in English | EuropePMC | ID: covidwho-2073328

ABSTRACT

Background. Kidney transplant recipients are at increased risk of SARS-CoV-2 infection and a more severe course of COVID-19. Methods. We conducted a quantitative serologic testing of antibodies specific for the wild type of SARS-CoV-2 and the Omicron variant of concern before and after a third-dose vaccination, either mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) in a cohort of 103 stable kidney transplant recipients (median [range] age, 58 [22–84] y, 57 men [55.3%]). Results. Third-dose vaccination increased the seroconversion rate from 57.3% to 71.8%. However, despite a marked rise of the antibody concentrations after the booster, 55.4% and 11.6% only formed neutralizing antibodies against the SARS-CoV-2 wild type and Omicron, respectively. Treatment with mycophenolic acid/mycophenolate mofetil (in strata of the dose quartiles), advanced age, and‚ above all‚ impaired renal function (eGFR <60 mL/min) adversely influenced the humoral immunity regarding seroconversion and inhibition of the wild type of SARS-CoV-2. Conclusions. Apart from immunosuppressive therapy, the humoral vaccination response is largely affected by nonmodifiable factors in kidney transplant recipients. With the currently leading and clinically easier Omicron variant, this puts into perspective the strategy to significantly enhance the protective efficacy of the available vaccines by reducing or temporarily stopping proliferation inhibitors, not least considering the inherent rejection risk with a possible deterioration of graft function.

7.
EBioMedicine ; 82: 104158, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1991006

ABSTRACT

BACKGROUND: In recent months, Omicron variants of SARS-CoV-2 have become dominant in many regions of the world, and case numbers with Omicron subvariants BA.1 and BA.2 continue to increase. Due to numerous mutations in the spike protein, the efficacy of currently available vaccines, which are based on Wuhan-Hu 1 isolate of SARS-CoV-2, is reduced, leading to breakthrough infections. Efficacy of monoclonal antibody therapy is also likely impaired. METHODS: In our in vitro study using A549-AT cells constitutively expressing ACE2 and TMPRSS2, we determined and compared the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 compared with Delta. FINDINGS: Almost no neutralisation of Omicron BA.1 and BA.2 was observed using sera from individuals vaccinated with two doses 6 months earlier, regardless of the type of vaccine taken. Shortly after the booster dose, most sera from triple BNT162b2-vaccinated individuals were able to neutralise both Omicron variants. In line with waning antibody levels three months after the booster, only weak residual neutralisation was observed for BA.1 (26%, n = 34, 0 median NT50) and BA.2 (44%, n = 34, 0 median NT50). In addition, BA.1 but not BA.2 was resistant to the neutralising monoclonal antibodies casirivimab/imdevimab, while BA.2 exhibited almost a complete evasion from the neutralisation induced by sotrovimab. INTERPRETATION: Both SARS-CoV-2 Omicron subvariants BA.1 and BA.2 escape antibody-mediated neutralisation elicited by vaccination, previous infection with SARS-CoV-2, and monoclonal antibodies. Waning immunity renders the majority of tested sera obtained three months after booster vaccination negative in BA.1 and BA.2 neutralisation. Omicron subvariant specific resistance to the monoclonal antibodies casirivimab/imdevimab and sotrovimab emphasizes the importance of genotype-surveillance and guided application. FUNDING: This study was supported in part by the Goethe-Corona-Fund of the Goethe University Frankfurt (M.W.) and the Federal Ministry of Education and Research (COVIDready; grant 02WRS1621C (M.W.).


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/metabolism , Antibodies, Viral , BNT162 Vaccine , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
8.
Vaccines (Basel) ; 10(4)2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1786096

ABSTRACT

The long-term effect of protection by two doses of SARS-CoV-2 vaccination in patients receiving chronic intermittent hemodialysis (CIHD) is an urging question. We investigated the humoral and cellular immune response of 42 CIHD patients who had received two doses of SARS-CoV-2 vaccine, and again after a booster vaccine with mRNA-1273 six months later. We measured antibody levels and SARS-CoV-2-specific surrogate neutralizing antibodies (SNA). Functional T cell immune response to vaccination was assessed by quantifying interferon-γ (IFN-γ) and IL-2 secreting T cells specific for SARS-CoV-2 using an ELISpot assay. Our data reveal a moderate immune response after the second dose of vaccination, with significantly decreasing SARS-CoV-2-specific antibody levels and less than half of the study group showed neutralizing antibodies six months afterwards. Booster vaccines increased the humoral response dramatically and led to a response rate of 89.2% for antibody levels and a response rate of 94.6% for SNA. Measurement in a no response/low response (NR/LR) subgroup of our cohort, which differed from the whole group in age and rate of immunosuppressive drugs, indicated failure of a corresponding T cell response after the booster vaccine. We strongly argue in favor of a regular testing of surrogate neutralizing antibodies and consecutive booster vaccinations for CIHD patients to provide a stronger and persistent immunity.

9.
Nephrol Dial Transplant ; 37(6): 1132-1139, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1662129

ABSTRACT

INTRODUCTION: The vital renal replacement therapy makes it impossible for dialysis patients to distance themselves socially. This results in a high risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing coronavuris disease 2019, with excess mortality due to disease burden and immunosuppression. We determined the efficacy of a 100-µg booster of mRNA-1273 (Moderna, Cambridge, MA, USA) 6 months after two doses of BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, USA) in 194 SARS-CoV-2-naïve dialysis patients. METHODS: Anti-SARS-CoV-2 spike antibodies were measured with the Elecsys Anti-SARS-CoV-2 S assay (Roche Diagnostics, Mannheim, Germany) 4 and 10-12 weeks after two doses of BNT162b2 as well as 4 weeks after the mRNA-1273 booster. The presence of neutralizing antibodies was measured by the SARS-CoV-2 Surrogate Virus Neutralization Test (GenScript Biotech, Piscataway, NJ, USA). Two different cut-offs for positivity were used, one according to the manufacturer's specifications and one correlating with positivity in a plaque reduction neutralization test (PRNT). Receiver operating characteristics analyses were performed to match the anti-SARS-CoV-2 spike antibody cut-offs with the cut-offs in the surrogate neutralization assay accordingly. RESULTS: Any level of immunoreactivity determined by the anti-SARS-CoV-2 spike antibody assay was found in 87.3% (n = 144/165) and 90.6% (n = 164/181) of patients 4 and 10-12 weeks, respectively, after two doses of BNT162b2. This was reduced to 68.5% or 60.6% 4 weeks and 51.7% or 35.4% 10-12 weeks, respectively, when using the ROC cut-offs for neutralizing antibodies in the surrogate neutralization test (manufacturer's cut-off ≥103 U/mL and cut-off correlating with PRNT ≥196 U/mL). Four weeks after the mRNA-1273 booster, the concentration of anti-SARS-CoV-2 spike antibodies increased to 23 119.9 U/mL and to 97.3% for both cut-offs of neutralizing antibodies. CONCLUSION: Two doses of BNT162b2 followed by one dose of mRNA-1273 within 6 months in patients receiving maintenance dialysis resulted in significant titres of SARS-CoV-2 spike antibodies. While two doses of mRNA vaccine achieved adequate humoral immunity in a minority, the third vaccination boosts the development of virus-neutralizing quantities of SARS-CoV-2 spike antibodies (against wild-type SARS-CoV-2) in almost all patients.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Renal Dialysis , Seroconversion , Vaccination , Vaccines, Synthetic , mRNA Vaccines
10.
J Clin Med ; 10(24)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554887

ABSTRACT

Testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by RT-PCR is a vital public health tool in the pandemic. Self-collected samples are increasingly used as an alternative to nasopharyngeal swabs. Several studies suggested that they are sufficiently sensitive to be a useful alternative. However, there are limited data directly comparing several different types of self-collected materials to determine which material is preferable. A total of 102 predominantly symptomatic adults with a confirmed SARS-CoV-2 infection self-collected native saliva, a tongue swab, a mid-turbinate nasal swab, saliva obtained by chewing a cotton pad and gargle lavage, within 48 h of initial diagnosis. Sample collection was unsupervised. Both native saliva and gargling with tap water had high diagnostic sensitivity of 92.8% and 89.1%, respectively. Nasal swabs had a sensitivity of 85.1%, which was not significantly inferior to saliva (p = 0.092), but 16.6% of participants reported they had difficult in self-collection of this sample. A tongue swab and saliva obtained by chewing a cotton pad had a significantly lower sensitivity of 74.2% and 70.2%, respectively. Diagnostic sensitivity was not related to the presence of clinical symptoms or to age. When comparing self-collected specimens from different material, saliva, gargle lavage or mid-turbinate nasal swabs may be considered for most symptomatic patients. However, complementary experiments are required to verify that differences in performance observed among the five sampling modes were not attributed to collection impairment.

11.
J Infect Dis ; 224(7): 1109-1114, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1470152

ABSTRACT

Whether monoclonal antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has been investigated using pseudoviruses. In this study we show that bamlanivimab, casirivimab, and imdevimab efficiently neutralize authentic SARS-CoV-2, including variant B.1.1.7 (alpha), but variants B.1.351 (beta) and P.2 (zeta) were resistant against bamlanivimab and partially resistant to casirivimab. Whether antibodies are able to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantshas been investigated using pseudoviruses. We show that authentic SARS-CoV-2 carrying E484K were resistant against bamlanivimab and less susceptible to casirivimab, convalescent and vaccine-elicited sera.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Amino Acid Substitution , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Mutation, Missense , Neutralization Tests
13.
J Clin Med ; 10(10)2021 May 14.
Article in English | MEDLINE | ID: covidwho-1234752

ABSTRACT

The plaque reduction neutralization test (PRNT) is a preferred method for the detection of functional, SARS-CoV-2 specific neutralizing antibodies from serum samples. Alternatively, surrogate enzyme-linked immunosorbent assays (ELISAs) using ACE2 as the target structure for the detection of neutralization-competent antibodies have been developed. They are capable of high throughput, have a short turnaround time, and can be performed under standard laboratory safety conditions. However, there are very limited data on their clinical performance and how they compare to the PRNT. We evaluated three surrogate immunoassays (GenScript SARS-CoV-2 Surrogate Virus Neutralization Test Kit (GenScript Biotech, Piscataway Township, NJ, USA), the TECO® SARS-CoV-2 Neutralization Antibody Assay (TECOmedical AG, Sissach, Switzerland), and the Leinco COVID-19 ImmunoRank™ Neutralization MICRO-ELISA (Leinco Technologies, Fenton, MO, USA)) and one automated quantitative SARS-CoV-2 Spike protein-based IgG antibody assay (Abbott GmbH, Wiesbaden, Germany) by testing 78 clinical samples, including several follow-up samples of six BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, NY, USA) vaccinated individuals. Using the PRNT as a reference method, the overall sensitivity of the examined assays ranged from 93.8 to 100% and specificity ranged from 73.9 to 91.3%. Weighted kappa demonstrated a substantial to almost perfect agreement. The findings of our study allow these assays to be considered when a PRNT is not available. However, the latter still should be the preferred choice. For optimal clinical performance, the cut-off value of the TECO assay should be individually adapted.

14.
Microorganisms ; 9(4)2021 Apr 02.
Article in English | MEDLINE | ID: covidwho-1167666

ABSTRACT

BACKGROUND: International travel is a major driver of the introduction and spread of SARS-CoV-2. AIM: To investigate SARS-CoV-2 genetic diversity in the region of a major transport hub in Germany, we characterized the viral sequence diversity of the SARS-CoV-2 variants circulating in Frankfurt am Main, the city with the largest airport in Germany, from the end of October to the end of December 2020. METHODS: In total, we recovered 136 SARS-CoV-2 genomes from nasopharyngeal swab samples. We isolated 104 isolates that were grown in cell culture and RNA from the recovered viruses and subjected them to full-genome sequence analysis. In addition, 32 nasopharyngeal swab samples were directly sequenced. RESULTS AND CONCLUSION: We found 28 different lineages of SARS-CoV-2 circulating during the study period, including the variant of concern B.1.1.7 (Δ69/70, N501Y). Six of the lineages had not previously been observed in Germany. We detected the spike protein (S) deletion Δ69/Δ70 in 15% of all sequences, a four base pair (bp) deletion (in 2.9% of sequences) and a single bp deletion (in 0.7% of sequences) in ORF3a, leading to ORF3a truncations. In four sequences (2.9%), an amino acid deletion at position 210 in S was identified. In a single sample (0.7%), both a 9 bp deletion in ORF1ab and a 7 bp deletion in ORF7a were identified. One sequence in lineage B.1.1.70 had an N501Y substitution while lacking the Δ69/70 in S. The high diversity of sequences observed over two months in Frankfurt am Main highlights the persisting need for continuous SARS-CoV-2 surveillance using full-genome sequencing, particularly in cities with international airport connections.

15.
J Virol Methods ; 291: 114102, 2021 05.
Article in English | MEDLINE | ID: covidwho-1085514

ABSTRACT

Multiple nucleic acid amplification tests (NATs) are available for the detection of SARS-CoV-2 in clinical specimens, including Laboratory Developed Tests (LDT), commercial high-throughput assays and point-of-care tests. Some assays were just recently released and there is limited data on their clinical performance. We compared the Xpert® Xpress SARS-CoV-2 (Cepheid) and Vivalytic VRI Panel (Schnelltest COVID-19) (Bosch) point-of-care tests with four high-throughput assays and one LDT, the cobas® SARS-CoV-2 test (Roche), the Allplex™ 2019-nCoV Assay (Seegene), the SARS-CoV-2 AMP (Abbott) Kit, the RealStar® SARS-CoV-2 RT-PCR Kit 1.0 (altona) as well as an assay using a SARS-CoV-2 RdRP gene specific primer and probe set. Samples from patients with confirmed SARS-CoV-2 infection, samples from the first and second SARS-CoV-2-PCR External Quality Assessment (EQA) (INSTAND e.V.) and a 10-fold serial dilution of a SARS-CoV-2 cell culture (SARS-CoV-2 Frankfurt 1) supernatant were examined. We determined that the NAT assays examined had a high specificity. Assays using the N gene as target demonstrated the highest sensitivity in the serial dilution panel, while all examined NAT assays showed a comparable sensitivity when testing clinical and EQA samples.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , High-Throughput Screening Assays/methods , Point-of-Care Testing , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/methods , Clinical Laboratory Techniques/methods , Humans , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
16.
J Clin Med ; 10(2)2021 Jan 17.
Article in English | MEDLINE | ID: covidwho-1076627

ABSTRACT

Due to globally rising numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resources for real-time reverse-transcription polymerase chain reaction (rRT-PCR)-based testing have been exhausted. In order to meet the demands of testing and reduce transmission, SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs) are being considered. These tests are fast, inexpensive, and simple to use, but whether they detect potentially infectious cases has not been well studied. We evaluated three lateral flow assays (RIDA®QUICK SARS-CoV-2 Antigen (R-Biopharm), SARS-CoV-2 Rapid Antigen Test (Roche)), and NADAL® COVID-19 Ag Test (Nal von Minden GmbH, Regensburg, Germany) and one microfluidic immunofluorescence assay (SARS-CoV-2 Ag Test (LumiraDx GmbH, Cologne, Germany)) using 100 clinical samples. Diagnostic rRT-PCR and cell culture testing as a marker for infectivity were performed in parallel. The overall Ag-RDT sensitivity for rRT-PCR-positive samples ranged from 24.3% to 50%. However, for samples with a viral load of more than 6 log10 RNA copies/mL (22/100), typically seen in infectious individuals, Ag-RDT positivity was between 81.8% and 100%. Only 51.6% (33/64) of the rRT-PCR-positive samples were infectious in cell culture. In contrast, three Ag-RDTs demonstrated a more significant correlation with cell culture infectivity (61.8-82.4%). Our findings suggest that large-scale SARS-CoV-2 Ag-RDT-based testing can be considered for detecting potentially infective individuals and reducing the virus spread.

17.
J Med Virol ; 92(10): 2243-2247, 2020 10.
Article in English | MEDLINE | ID: covidwho-935138

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological assays are urgently needed for rapid diagnosis, contact tracing, and for epidemiological studies. So far, there is limited data on how commercially available tests perform with real patient samples, and if positive tested samples show neutralizing abilities. Focusing on IgG antibodies, we demonstrate the performance of two enzyme-linked immunosorbent assay (ELISA) assays (Euroimmun SARS-CoV-2 IgG and Vircell COVID-19 ELISA IgG) in comparison to one lateral flow assay (FaStep COVID-19 IgG/IgM Rapid Test Device) and two in-house developed assays (immunofluorescence assay [IFA] and plaque reduction neutralization test [PRNT]). We tested follow up serum/plasma samples of individuals polymerase chain reaction-diagnosed with COVID-19. Most of the SARS-CoV-2 samples were from individuals with moderate to the severe clinical course, who required an in-patient hospital stay. For all examined assays, the sensitivity ranged from 58.8 to 76.5% for the early phase of infection (days 5-9) and from 93.8% to 100% for the later period (days 10-18).


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adult , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/standards , Female , Fluorescent Antibody Technique, Indirect/standards , Hospitalization , Humans , Male , Middle Aged , Neutralization Tests/standards , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Severity of Illness Index , Time Factors
19.
J Clin Virol ; 129: 104480, 2020 08.
Article in English | MEDLINE | ID: covidwho-584207

ABSTRACT

Serological SARS-CoV-2 assays are urgently needed for diagnosis, contact tracing and for epidemiological studies. So far, there is limited data on how recently commercially available, high-throughput immunoassays, using different recombinant SARS-CoV-2 antigens, perform with clinical samples. Focusing on IgG and total antibodies, we demonstrate the performance of four automated immunoassays (Abbott Architect™ i2000 (N protein-based)), Roche cobas™ e 411 analyzer (N protein-based, not differentiating between IgA, IgM or IgG antibodies), LIAISON®XL platform (S1 and S2 protein-based), VIRCLIA® automation system (S1 and N protein-based) in comparison to two ELISA assays (Euroimmun SARS-CoV-2 IgG (S1 protein-based) and Virotech SARS-CoV-2 IgG ELISA (N protein-based)) and an in-house developed plaque reduction neutralization test (PRNT). We tested follow up serum/plasma samples of individuals PCR-diagnosed with COVID-19. When calculating the overall sensitivity, in a time frame of 49 days after first PCR-positivity, the PRNT as gold standard, showed the highest sensitivity with 93.3% followed by the dual-target assay for the VIRCLIA® automation system with 89%. The overall sensitivity in the group of N protein-based assays ranged from 66.7 to 77.8% and in the S protein-based-assays from 71.1 to 75.6%. Five follow-up samples of three individuals were only detected in either an S and/or N protein-based assay, indicating an individual different immune response to SARS-CoV-2 and the influence of the used assay in the detection of IgG antibodies. This should be further analysed. The specificity of the examined assays was ≥ 97%. However, because of the low or unknown prevalence of SARS-CoV-2, the examined assays in this study are currently primarily eligible for epidemiological investigations, as they have limited information in individual testing.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , High-Throughput Screening Assays/methods , Immunoglobulin G/blood , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Automation, Laboratory/methods , COVID-19 , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL